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Abstract: The intramolecular 1,3-dipolar cycloaddition of homochiral dihydroimidazolium ylides, generated in situ, is 
the key reaction in a sequence that rapidly affords optically active 2,3,4-trisubstituted pyrrolidines suitably 
functionalised for further elaboration. © 1997 Elsevier Science Ltd. All rights reserved. 
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A number of key metabolites with interesting biological profiles, in particular neuroexcitatory 

properties, 1 feature a 2,3,4-trisubstituted pyrrolidine ring. Synthesis of such systems, exemplified by kainic 

acid 1 and acromelic acid A 2, has been the focus of much recent attention. 2 The 1,3-dipolar cycloaddition of 

azomethine ylides with suitable dipolarophiles is an attractive strategy for the synthesis of highly 

functionalised pyrrolidines. 3 We have recently developed the 4-phenylimidazolinium ylides 4, formed in situ 

from the dihydroimidazoles 3, as new homochiral azomethine ylides in a route to optically active 

pyrrolidines that generates three of the five bonds of the new pyrrolidine ring in one-pot, illustrated in 

Scheme 1.4 We now report the use of these ylides in in tramolecular  cycloadditions that provide a rapid and 

stereocontrolled approach to 2,3,4-trisubstituted pyrrolidines. The three substituents, each functionalised, are 

all introduced from a single precursor. 
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The proposed dipolarophiles, having an N-alkylating agent in the same molecule, were readily 

assembled. Treatment of acrolein with dilute sulphuric acid afforded 3-hydroxypropanal, unstable but readily 

handled as its hydrate in aqueous solution. Basification with Na2CO3 was followed by addition of carbo- 

ethoxymethyltriphenylphosphonium bromide and further Na2CO3 to effect the Wittig coupling, providing 

ethyl E-5-hydroxypent-2-enoate 55 in an overall 39% yield. O-Acylation of 5 with bromoacetyl bromide 

(Et3N, CH2C12; 68%) gave the E-dipolarophile 6, Scheme 2. 3-Butyn-l-ol was first protected by O-silylation 
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iv, TBDMSCI, DMAP, Et3N; v, EtMgBr, THF, then CICO2Et; vi, PPTS, EtOH; vii, H2, Pd-BaSO4, quinoline, MeOH 

Scheme 2 

[ButMe2SiC1 (TBDMSC1), Et3N, DMAP; 91%], then treated successively with ethylmagnesium bromide 

and ethyl chloroformate (THF; 81%) before desilylation to yield ethyl 5-hydroxypent-2-ynoate (PPTS, 

EtOH; 79%). Partial hydrogenation (H2, 1 atm., Pd-BaSO4, quinoline, MeOH; quantitative) to the Z-alkene 

7 and final O-acylation (bromoacetyl bromide, Et3N, CH2C12; 66%) led to the Z-dipolarophile 8. 

As a point of reference, we examined various of the intermediates above as dipolarophiles in inter- 

molecular reactions with heterocycles 3 using our one-pot protocol [3, bromoacetate ester as N-alkylating 

agent, and dipolarophile in THF at reflux: 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) added dropwise over 4 

h]. 4 Thus E-hydroxy ester 5, its TBDMS ether, 6 and the TBDMS ethers of ethyl 5-hydroxypent-2-ynoate 

and of Z-hydroxy ester 7 failed to yield any identifiable cycloadduct; similar observations were made with 

diethyl glutaconate, 2(5H)-furanone and 5,6-dihydro-2H-pyran-2-one. 7 We were also disappointed to find 

that the Z-bromo-acetate 8 appeared to undergo polymerization under the reaction conditions. 

On the other hand, treatment of the E-bromoacetate 6 with either enantiomer of 3 (THF at reflux, DBU 

added over 4 h) led in one-pot to the crystalline tricyclic adducts 9a (from R-3a; 31%) and 9b (from S-3b; 

40%), Scheme 3. 8 The structures of these tricyclic adducts were secured by nOe and COSY NMR studies, 

and by an X-ray crystal structure analysis of 9b, Figure 1.9 The stereochemistry of the adducts is fully 

consistent with our transition state model, 4a i.e. anti dipole and endo approach of dipolarophile, with facial 

selectivity controlled by the 4-phenyl substituent. 10 
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Figure 1: X-Ray crystal structure of cycloadduct 9b 
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Removal of the chiral template to reveal the new trisubstituted pyrrolidine began with aminal reduction 

of adduct 9b, accompanied by spontaneous lactamisation of the liberated secondary amino-group to afford 

the bicyclic lactam 10 (NaBH3CN, aq. HC1-THF; 70%), 4b [Ct]D24 +1.9 (c 3.8, CH2C12) whilst severing the 

ester that had served as the dipole-dipolarophile tether. Reaction with excess methyl-lithium (cumene-THF) 

gave the tertiary alcohol 11 (50%), [Ct]D 24 -29.6 (c 0.62, CH2C12), and subsequent hydrogenolysis [H2, 

Pd(OH)2, MeOH; 54%] finally removed the template from N-1 to leave amide 12.11 Alternatively, 

subjecting 10 directly to hydrogenolysis again cleaved the template from N-1 to yield amide 13 (45%). 
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Reagents: i, 6, DBU, THF at reflux; ii, NaBH3CN, aq. HC1-THF; iii, MeLi, 
cumene-THF; iv, H2, Pd(OH)2, MeOH Scheme 3 

To avoid lactamisation, tricycle 9b was reduced (LiA1H4, THF; quantitative) to the bicyclic triol 14. 

Attempted protection of this polar triol as the tris-(2,2,2-trichloroethylcarbonate) (C13CCH2OCOC1, 

pyridine, CH2CI2) unexpectedly yielded 15 (67%), presumably by formation and subsequent elimination of 

the C-7 carbonate function, Scheme 4. In order to circumvent this, triol 14 was trimethylated (KHMDS, MeI, 

THF; quantitative) to afford 16, and the aminal function smoothly reduced as before to give 17 in 

quantitative yield. Hydrogenolysis, however, proved surprisingly difficult; trimethoxy pyrrolidine 18 was 

tentatively identified in the product mixture although it could not be separated from other polar materials, 

even by reverse phase HPLC. 
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We have thus demonstrated a rapid synthesis of 2,3,4-trisubstituted pyrrolidines, related to a number of 

natural products, and shown how the three substituents may be separately manipulated. Further exploitation 

of this intramolecular cycloaddition strategy is underway. 
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